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Background

> Stress on water resources
» Drought
» Socio economic growth
» Need for efficient water resources management
» Requires skillful streamflow predictions
> For short term (weeks) time scales
» And long term (seasonal to inter-annual)
» Also incorporate seasonal climate forecasts based on
large-scale climate forcings



Motivation

» CBRFC & Natural Resource Conservation Service (NRCS)
work together to predict streamflows at two time scales
> At seasonal time scale, CBRFC uses the following models:

» Statistical Water Supply (SWS), a regression based method
that relates observed data with future streamflow
» Ensemble Streamflow Prediction (ESP)

> Based on historical daily weather sequence and a
physically-based watershed model (such as the
Sacremento Soil Moisture model, SAC-SMA)

» NRCS uses a principle components regression technique

» Forecasts from these models are qualitatively combined to
issue a single 'coordinated’ forecast for U.S. Bureau of
Reclamation (USBR)



Motivation: ESP

» The ESP forecasts start at time 't', proceeding as follows:
» Calibrated watershed model is run with historical data until
time 't’
» Thus obtaining the initial condition for the hydrologic state of

the basin
» Historical weather sequence for the period 't+1’ through "t+k'’
(desired length of forecast) is used to force the hydrologic

model
» Which creates an ensemble of streamflow sequences

> Where the number of ensembles is equal to number of
historical years



Motivation: ESP

Limited historical data means limited ensembles

v

v

Incorporating seasonal forecasts further reduces the number of
ensembles

» For instance, forecasting based on warm ENSO phase

v

Need arises for a simple and efficient approach to generate a
'rich variety’ of streamflow ensembles

» Will allow for robust estimation of probability density functions
(PDFs)

Hence bringing in stochastic weather generators

v



Stochastic Weather Generators

» Traditional weather generators are parametric
» Generate ensembles of weather sequences
Employ Markov chain for precipitation occurences
PDFs (Gamma, Log-Normal, etc) for precipitation amounts

AR-1 for maximum and minimum temperatures (e.g.,
Richardson 1981)

» Extensions to multi-site were not trivial

v vy

» Extensions to 'conditional’ generation (i.e., conditioned on
seasonal climate forecasts) also proved difficult



Stochastic Weather Generators

» Nonparametric weather generators offer attractive alternative
» Data-driven

> Thus can 'capture’ deviations from theoretical probability
distributions
» And also nonlinearities between variables

» Can be based on kernel density estimators (Rajagopalan et al.,
1996)

» Or use resampling (Lall and Sharma, 1996; Rajagopalan and
Lall, 1999)



K-Nearest Neighbor Weather Generator

» Semi-parametric weather generator (Apipattanavis et al.,
2007)

» First precipitation state is generated by a Markov chain fitted
to the historical data (wet or dry)

» Then precicipation time series is created using Markov chain

» A K-Nearest Neighbor (KNN) method is applied to the time
series, which can be expressed as simulating from the
conditional PDF:

f(Xt ‘ Xt—175t75t—1)

» where x; and x;_1 are the weather states and S; and S;_; are
the precipitation state on day t and t — 1



K-Nearest Neighbor Method

» Suppose January 1st is the simulated day of interest
» A 7-day (can be user defined) window is placed on January
1st (i.e. December 29th to January 4th)
» This window around a given point is defined as a
"'neighborhood’
» Calculates weighted Euclidean distance between weather
variables of current day and neighbors

> Nearest neighbor receives a higher weight and the kth
neighbor gets the least

» One of the historical days within the 7-day window is selected
based on the previously calculated weights

> For example, a simulated January 1st could be January 3rd,
1985 from historical data



K-NN: A Physical Example

> Unconditional resampling
» Drawing cards from a well-shuffled deck
» Corresponds to selecting a (single or a set of) historical years
from the record, with equal chance
» Conditional resampling
» Drawing cards from a biased deck
» Corresponds to selecting a (single or a set of) historical years
with unequal chance



Application



Single Site Application
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Multi Site Application

» The three stations (upper, middle, and lower) were spatially
averaged to produce a 'synthetic’ single site time series
» Daily weather is generated at all locations simultaneously
» Captures spatial dependency automatically

» Future modifications include elevation weighting or Principal
Component Analysis (Yates et al., 2003)



Validation

» A suite of statistics were computed from the simulations and
compared with historical observations

» Displayed as boxplots
» Distributional Statistics

» Mean

» Standard Deviation

» IQR

> Skew

» Probability density functions (PDFs)

» Threshold exceedances and extremes

» Average number of wet and dry days
» Total rainfall exceeding a threshold (e.g, 75th percentile)
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Figure: Single Site Max. Temperature
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Figure: Average Wet and Dry Days in Selected Months
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Figure: Single Site Max. Temperature from Averaged Multi Site
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Conditional Simulation

IRl Multi—Model Probability Forecast for Precipitation
February—March—April 2003 made October 2002
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Summary and Plans for Near-Term

» K-NN weather generator implemented and tested on small
region in CO river basin
» Historical statistics were well reproduced
> Further testing will include
» Additional statistics, such as extreme precipitation, hot and
cold spells, etc
» Better weighting approaches to generate the 'synthetic’ single
site
» Also will perform testing on conditional simulation based on
seasonal climate forecasts

» Then testing will be performed on other sites in Upper
Colorado River Basin

» Ultimately, multi-site weather sequences will be driven
through SAC-SMA
» Performance of the streamflow ensembles will be evaluated
» Has been done with Precipitation-Runoff Modeling System
(PRMS) before (Apipattanavis et al., 2007)



How will USBR and CBRFC benefit?

» Project has 2 key things to develop
» A conditional stochastic weather generator to provide daily
weather ensembles based on NWS short term and NOAA
seasonal outlooks
» An optimal multi-model ensemble combination, which will
provide a combined ensemble forecast from physical and
statistical models
» Project will also build on a multi-model statistical streamflow
forecast tool
» Demonstrated on the Gunnison River Basin (Regona et al.,
2006) and Upper Colorado River Basin (Bracken et al., 2010)
» These new and improved forecasts will be used for efficient
operation and management of major reservoirs
» Thus impacting water resources, agriculture, hydropower, and
aquatic environments in the southwest and inter mountain
regions of western U.S.



Questions?



